speech2text-fa/main.py

79 lines
2.1 KiB
Python

import io
import logging
import os
import warnings
import librosa
import transformers
import torch
import uvicorn
from dotenv import load_dotenv
from fastapi import FastAPI, File, UploadFile
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
app = FastAPI()
warnings.filterwarnings("ignore")
transformers.logging.set_verbosity_error()
load_dotenv()
MODEL = os.getenv("MODEL", "m3hrdadfi/wav2vec2-large-xlsr-persian")
LOG_LEVEL = os.getenv("LOG_LEVEL", "DEBUG")
PORT = int(os.getenv("PORT", 8000))
# Initialize logger
logger = logging.getLogger("speech2text-fa")
level = getattr(logging, LOG_LEVEL.upper())
fmt = "%(asctime)s | %(levelname)-8s | %(message)s"
datefmt = "%Y-%m-%d %H:%M:%S"
ch = logging.StreamHandler()
ch.setLevel(logging.DEBUG)
formatter = logging.Formatter(fmt, datefmt)
ch.setFormatter(formatter)
logger.addHandler(ch)
logger.setLevel(level)
# Load tokenizer and model from Hugging Face
tokenizer = Wav2Vec2Processor.from_pretrained(MODEL)
model = Wav2Vec2ForCTC.from_pretrained(MODEL)
logger.info("Loading model is Done!")
def mp3_to_text(audio_data: io.BytesIO):
# Resample to 16kHz
audio, sample_rate = librosa.load(audio_data, sr=16000)
logger.info("Resampling is Done!")
# Preprocess the audio
input_values = tokenizer(audio, sampling_rate=16000, return_tensors="pt", padding="longest").input_values
logits = model(input_values).logits
logger.info("Processing the audio is Done!")
# Decode the predicted IDs
predicted_ids = torch.argmax(logits, dim=-1)
transcription = tokenizer.batch_decode(predicted_ids)
logger.info("Decoding the prodicted IDs is Done!")
return transcription[0]
@app.post("/transcribe")
async def transcribe_audio(audio_file: UploadFile = File(...)):
# Load the audio from the file
contents = await audio_file.read()
audio_data = io.BytesIO(contents)
# Convert to text
transcription = mp3_to_text(audio_data)
return {"transcription": transcription}
@app.get("/docs")
async def docs():
return {"message": "Welcome to the speech-to-text API!"}
if __name__ == "__main__":
uvicorn.run(app, host="0.0.0.0", port=PORT, log_level=LOG_LEVEL.lower())