Feat: ReST API is done using FastAPI
This commit is contained in:
parent
32a9ab07ac
commit
502d4ee844
@ -1,2 +1,3 @@
|
||||
MODEL="m3hrdadfi/wav2vec2-large-xlsr-persian"
|
||||
LOG_LEVEL="INFO"
|
||||
PORT=8000
|
||||
|
14
README.md
Normal file
14
README.md
Normal file
@ -0,0 +1,14 @@
|
||||
# Persian Speech-to-text
|
||||
|
||||
|
||||
## Testing
|
||||
|
||||
### With `curl`
|
||||
```sh
|
||||
curl -X POST "http://localhost:8000/transcribe" -H "accept: application/json" -H "Content-Type: multipart/form-data" -F "audio_file=@sample.wav"
|
||||
```
|
||||
|
||||
### With `HTTPie`
|
||||
```sh
|
||||
http -f POST http://localhost:8000/transcribe audio_file@sample.wav
|
||||
```
|
72
main.py
72
main.py
@ -1,3 +1,4 @@
|
||||
import io
|
||||
import logging
|
||||
import os
|
||||
import warnings
|
||||
@ -5,43 +6,44 @@ import warnings
|
||||
import librosa
|
||||
import transformers
|
||||
import torch
|
||||
import uvicorn
|
||||
from dotenv import load_dotenv
|
||||
from fastapi import FastAPI, File, UploadFile
|
||||
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
|
||||
|
||||
|
||||
app = FastAPI()
|
||||
|
||||
warnings.filterwarnings("ignore")
|
||||
transformers.logging.set_verbosity_error()
|
||||
load_dotenv()
|
||||
MODEL = os.getenv("MODEL", "m3hrdadfi/wav2vec2-large-xlsr-persian")
|
||||
LOG_LEVEL = os.getenv("LOG_LEVEL", "DEBUG")
|
||||
PORT = int(os.getenv("PORT", 8000))
|
||||
|
||||
# Initialize logger
|
||||
logger = logging.getLogger("speech2text-fa")
|
||||
level = getattr(logging, LOG_LEVEL.upper())
|
||||
fmt = "%(asctime)s | %(levelname)-8s | %(message)s"
|
||||
datefmt = "%Y-%m-%d %H:%M:%S"
|
||||
ch = logging.StreamHandler()
|
||||
ch.setLevel(logging.DEBUG)
|
||||
formatter = logging.Formatter(fmt, datefmt)
|
||||
ch.setFormatter(formatter)
|
||||
logger.addHandler(ch)
|
||||
logger.setLevel(level)
|
||||
|
||||
# Load tokenizer and model from Hugging Face
|
||||
tokenizer = Wav2Vec2Processor.from_pretrained(MODEL)
|
||||
model = Wav2Vec2ForCTC.from_pretrained(MODEL)
|
||||
logger.info("Loading model is Done!")
|
||||
|
||||
|
||||
def initLogger():
|
||||
logger = logging.getLogger("speech2text-fa")
|
||||
level = getattr(logging, LOG_LEVEL.upper())
|
||||
|
||||
fmt = "%(asctime)s | %(levelname)-8s | %(message)s"
|
||||
datefmt = "%Y-%m-%d %H:%M:%S"
|
||||
ch = logging.StreamHandler()
|
||||
ch.setLevel(logging.DEBUG)
|
||||
formatter = logging.Formatter(fmt, datefmt)
|
||||
ch.setFormatter(formatter)
|
||||
logger.addHandler(ch)
|
||||
|
||||
logger.setLevel(level)
|
||||
return logger
|
||||
|
||||
|
||||
def mp3_to_text(mp3_file_path):
|
||||
# Load the MP3 file and resample to 16kHz
|
||||
audio, sample_rate = librosa.load(mp3_file_path, sr=16000)
|
||||
def mp3_to_text(audio_data: io.BytesIO):
|
||||
# Resample to 16kHz
|
||||
audio, sample_rate = librosa.load(audio_data, sr=16000)
|
||||
logger.info("Resampling is Done!")
|
||||
|
||||
# Load tokenizer and model from Hugging Face
|
||||
tokenizer = Wav2Vec2Processor.from_pretrained(MODEL)
|
||||
model = Wav2Vec2ForCTC.from_pretrained(MODEL)
|
||||
logger.info("Loading model is Done!")
|
||||
|
||||
# Preprocess the audio
|
||||
input_values = tokenizer(audio, sampling_rate=16000, return_tensors="pt", padding="longest").input_values
|
||||
logits = model(input_values).logits
|
||||
@ -55,8 +57,22 @@ def mp3_to_text(mp3_file_path):
|
||||
return transcription[0]
|
||||
|
||||
|
||||
@app.post("/transcribe")
|
||||
async def transcribe_audio(audio_file: UploadFile = File(...)):
|
||||
# Load the audio from the file
|
||||
contents = await audio_file.read()
|
||||
audio_data = io.BytesIO(contents)
|
||||
|
||||
# Convert to text
|
||||
transcription = mp3_to_text(audio_data)
|
||||
|
||||
return {"transcription": transcription}
|
||||
|
||||
|
||||
@app.get("/docs")
|
||||
async def docs():
|
||||
return {"message": "Welcome to the speech-to-text API!"}
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
logger = initLogger()
|
||||
text = mp3_to_text("samples/sample1.wav")
|
||||
print()
|
||||
print(text)
|
||||
uvicorn.run(app, host="0.0.0.0", port=PORT, log_level=LOG_LEVEL.lower())
|
||||
|
Loading…
Reference in New Issue
Block a user