import logging import os import warnings import librosa import transformers import torch from dotenv import load_dotenv from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor warnings.filterwarnings("ignore") transformers.logging.set_verbosity_error() load_dotenv() MODEL = os.getenv("MODEL", "m3hrdadfi/wav2vec2-large-xlsr-persian") LOG_LEVEL = os.getenv("LOG_LEVEL", "DEBUG") def initLogger(): logger = logging.getLogger("speech2text-fa") level = getattr(logging, LOG_LEVEL.upper()) fmt = "%(asctime)s | %(levelname)-8s | %(message)s" datefmt = "%Y-%m-%d %H:%M:%S" ch = logging.StreamHandler() ch.setLevel(logging.DEBUG) formatter = logging.Formatter(fmt, datefmt) ch.setFormatter(formatter) logger.addHandler(ch) logger.setLevel(level) return logger def mp3_to_text(mp3_file_path): # Load the MP3 file and resample to 16kHz audio, sample_rate = librosa.load(mp3_file_path, sr=16000) logger.info("Resampling is Done!") # Load tokenizer and model from Hugging Face tokenizer = Wav2Vec2Processor.from_pretrained(MODEL) model = Wav2Vec2ForCTC.from_pretrained(MODEL) logger.info("Loading model is Done!") # Preprocess the audio input_values = tokenizer(audio, sampling_rate=16000, return_tensors="pt", padding="longest").input_values logits = model(input_values).logits logger.info("Processing the audio is Done!") # Decode the predicted IDs predicted_ids = torch.argmax(logits, dim=-1) transcription = tokenizer.batch_decode(predicted_ids) logger.info("Decoding the prodicted IDs is Done!") return transcription[0] if __name__ == "__main__": logger = initLogger() text = mp3_to_text("samples/sample1.wav") print() print(text)