Add logging
This commit is contained in:
		
							parent
							
								
									d96084d798
								
							
						
					
					
						commit
						5add45c71c
					
				
							
								
								
									
										36
									
								
								main.py
									
									
									
									
									
								
							
							
						
						
									
										36
									
								
								main.py
									
									
									
									
									
								
							@ -1,3 +1,5 @@
 | 
			
		||||
import logging
 | 
			
		||||
 | 
			
		||||
import librosa
 | 
			
		||||
import torch
 | 
			
		||||
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
 | 
			
		||||
@ -6,34 +8,48 @@ from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
 | 
			
		||||
MODEL = "/home/reza/data/huggingface-models/04.wav2vec2-large-xlsr-persian"
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
def initLogger(name=__name__, level=logging.DEBUG):
 | 
			
		||||
    if name[:2] == '__' and name[-2:] == '__':
 | 
			
		||||
        name = name[2:-2]
 | 
			
		||||
    logger = logging.getLogger(name)
 | 
			
		||||
    
 | 
			
		||||
    fmt = '%(asctime)s | %(levelname)-8s | %(name)s | %(message)s'
 | 
			
		||||
    datefmt = '%Y-%m-%d %H:%M:%S'
 | 
			
		||||
    ch = logging.StreamHandler()
 | 
			
		||||
    ch.setLevel(logging.DEBUG)
 | 
			
		||||
    formatter = logging.Formatter(fmt, datefmt)
 | 
			
		||||
    ch.setFormatter(formatter)
 | 
			
		||||
    logger.addHandler(ch)
 | 
			
		||||
 | 
			
		||||
    logger.setLevel(level)
 | 
			
		||||
    return logger
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
def mp3_to_text(mp3_file_path):
 | 
			
		||||
    # Load the MP3 file and resample to 16kHz
 | 
			
		||||
    audio, sample_rate = librosa.load(mp3_file_path, sr=16000)
 | 
			
		||||
    print()
 | 
			
		||||
    print("Resampling is Done!")
 | 
			
		||||
    logger.info("Resampling is Done!")
 | 
			
		||||
 | 
			
		||||
    # Load tokenizer and model from Hugging Face
 | 
			
		||||
    tokenizer = Wav2Vec2Processor.from_pretrained(MODEL)
 | 
			
		||||
    model = Wav2Vec2ForCTC.from_pretrained(MODEL)
 | 
			
		||||
    print()
 | 
			
		||||
    print("Loading model is Done!")
 | 
			
		||||
    logger.info("Loading model is Done!")
 | 
			
		||||
 | 
			
		||||
    # Preprocess the audio
 | 
			
		||||
    input_values = tokenizer(audio, sampling_rate=16000, return_tensors="pt", padding="longest").input_values
 | 
			
		||||
    logits = model(input_values).logits
 | 
			
		||||
    print()
 | 
			
		||||
    print("Processing the audio is Done!")
 | 
			
		||||
    logger.info("Processing the audio is Done!")
 | 
			
		||||
 | 
			
		||||
    # Decode the predicted IDs
 | 
			
		||||
    predicted_ids = torch.argmax(logits, dim=-1)
 | 
			
		||||
    transcription = tokenizer.batch_decode(predicted_ids)
 | 
			
		||||
    print()
 | 
			
		||||
    print("Decoding the prodicted IDs is Done!")
 | 
			
		||||
    logger.info("Decoding the prodicted IDs is Done!")
 | 
			
		||||
 | 
			
		||||
    return transcription[0]
 | 
			
		||||
 | 
			
		||||
# text = mp3_to_text("samples/captcha.mp3")
 | 
			
		||||
 | 
			
		||||
if __name__ == "__main__":
 | 
			
		||||
    logger = initLogger('speech2text_fa', level=logging.INFO)
 | 
			
		||||
    text = mp3_to_text("samples/sample1.wav")
 | 
			
		||||
    print()
 | 
			
		||||
    print(text)
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
		Loading…
	
		Reference in New Issue
	
	Block a user